This documentation is automatically generated by online-judge-tools/verification-helper
#include "Convolution/number_theoretical_transform.hpp"#pragma once
#include "../Number/modint.hpp"
#include <vector>
template <int MOD, int Root>
struct NumberTheoreticalTransform {
using mint = ModInt<MOD>;
using mints = std::vector<mint>;
// the 2^k-th root of 1
std::vector<mint> zetas;
explicit NumberTheoreticalTransform() {
int exp = MOD - 1;
while (true) {
mint zeta = mint(Root).pow(exp);
zetas.push_back(zeta);
if (exp & 1) break;
exp /= 2;
}
}
// ceil(log_2 n)
static int clog2(int n) {
int k = 0;
while ((1 << k) < n) ++k;
return k;
}
// 2-radix cooley-tukey algorithm without bit reverse
// the size of f must be a power of 2
void ntt(mints& f) const {
int n = f.size();
for (int m = n >> 1; m >= 1; m >>= 1) {
auto zeta = zetas[clog2(m) + 1];
mint zetapow(1);
for (int p = 0; p < m; ++p) {
for (int s = 0; s < n; s += (m << 1)) {
auto l = f[s + p],
r = f[s + p + m];
f[s + p] = l + r;
f[s + p + m] = (l - r) * zetapow;
}
zetapow = zetapow * zeta;
}
}
}
// the inverse of above function
void intt(mints& f) const {
int n = f.size();
for (int m = 1; m <= (n >> 1); m <<= 1) {
auto zeta = zetas[clog2(m) + 1].inv();
mint zetapow(1);
for (int p = 0; p < m; ++p) {
for (int s = 0; s < n; s += (m << 1)) {
auto l = f[s + p],
r = f[s + p + m] * zetapow;
f[s + p] = l + r;
f[s + p + m] = l - r;
}
zetapow = zetapow * zeta;
}
}
auto ninv = mint(n).inv();
for (auto& x : f) x *= ninv;
}
mints convolute(mints f, mints g) const {
int fsz = f.size(),
gsz = g.size();
// simple convolution in small cases
if (std::min(fsz, gsz) < 8) {
mints ret(fsz + gsz - 1, 0);
for (int i = 0; i < fsz; ++i) {
for (int j = 0; j < gsz; ++j) {
ret[i + j] += f[i] * g[j];
}
}
return ret;
}
int n = 1 << clog2(fsz + gsz - 1);
f.resize(n, mint(0));
g.resize(n, mint(0));
ntt(f);
ntt(g);
for (int i = 0; i < n; ++i) f[i] *= g[i];
intt(f);
f.resize(fsz + gsz - 1);
return f;
}
};#line 2 "Convolution/number_theoretical_transform.hpp"
#line 2 "Number/modint.hpp"
#include <iostream>
template <int MOD>
struct ModInt {
using lint = long long;
int val;
// constructor
ModInt(lint v = 0) : val(v % MOD) {
if (val < 0) val += MOD;
};
// unary operator
ModInt operator+() const { return ModInt(val); }
ModInt operator-() const { return ModInt(MOD - val); }
ModInt& operator++() { return *this += 1; }
ModInt& operator--() { return *this -= 1; }
// functions
ModInt pow(lint n) const {
auto x = ModInt(1);
auto b = *this;
while (n > 0) {
if (n & 1) x *= b;
n >>= 1;
b *= b;
}
return x;
}
ModInt inv() const {
int s = val, t = MOD,
xs = 1, xt = 0;
while (t != 0) {
auto div = s / t;
s -= t * div;
xs -= xt * div;
std::swap(s, t);
std::swap(xs, xt);
}
return xs;
}
// arithmetic
ModInt operator+(const ModInt& x) const { return ModInt(*this) += x; }
ModInt operator-(const ModInt& x) const { return ModInt(*this) -= x; }
ModInt operator*(const ModInt& x) const { return ModInt(*this) *= x; }
ModInt operator/(const ModInt& x) const { return ModInt(*this) /= x; }
ModInt& operator+=(const ModInt& x) {
if ((val += x.val) >= MOD) val -= MOD;
return *this;
}
ModInt& operator-=(const ModInt& x) {
if ((val -= x.val) < 0) val += MOD;
return *this;
}
ModInt& operator*=(const ModInt& x) {
val = lint(val) * x.val % MOD;
return *this;
}
ModInt& operator/=(const ModInt& x) { return *this *= x.inv(); }
// comparator
bool operator==(const ModInt& b) const { return val == b.val; }
bool operator!=(const ModInt& b) const { return val != b.val; }
// I/O
friend std::istream& operator>>(std::istream& is, ModInt& x) {
lint v;
is >> v;
x = v;
return is;
}
friend std::ostream& operator<<(std::ostream& os, const ModInt& x) {
return os << x.val;
}
};
using modint1000000007 = ModInt<1000000007>;
using modint998244353 = ModInt<998244353>;
#line 4 "Convolution/number_theoretical_transform.hpp"
#include <vector>
template <int MOD, int Root>
struct NumberTheoreticalTransform {
using mint = ModInt<MOD>;
using mints = std::vector<mint>;
// the 2^k-th root of 1
std::vector<mint> zetas;
explicit NumberTheoreticalTransform() {
int exp = MOD - 1;
while (true) {
mint zeta = mint(Root).pow(exp);
zetas.push_back(zeta);
if (exp & 1) break;
exp /= 2;
}
}
// ceil(log_2 n)
static int clog2(int n) {
int k = 0;
while ((1 << k) < n) ++k;
return k;
}
// 2-radix cooley-tukey algorithm without bit reverse
// the size of f must be a power of 2
void ntt(mints& f) const {
int n = f.size();
for (int m = n >> 1; m >= 1; m >>= 1) {
auto zeta = zetas[clog2(m) + 1];
mint zetapow(1);
for (int p = 0; p < m; ++p) {
for (int s = 0; s < n; s += (m << 1)) {
auto l = f[s + p],
r = f[s + p + m];
f[s + p] = l + r;
f[s + p + m] = (l - r) * zetapow;
}
zetapow = zetapow * zeta;
}
}
}
// the inverse of above function
void intt(mints& f) const {
int n = f.size();
for (int m = 1; m <= (n >> 1); m <<= 1) {
auto zeta = zetas[clog2(m) + 1].inv();
mint zetapow(1);
for (int p = 0; p < m; ++p) {
for (int s = 0; s < n; s += (m << 1)) {
auto l = f[s + p],
r = f[s + p + m] * zetapow;
f[s + p] = l + r;
f[s + p + m] = l - r;
}
zetapow = zetapow * zeta;
}
}
auto ninv = mint(n).inv();
for (auto& x : f) x *= ninv;
}
mints convolute(mints f, mints g) const {
int fsz = f.size(),
gsz = g.size();
// simple convolution in small cases
if (std::min(fsz, gsz) < 8) {
mints ret(fsz + gsz - 1, 0);
for (int i = 0; i < fsz; ++i) {
for (int j = 0; j < gsz; ++j) {
ret[i + j] += f[i] * g[j];
}
}
return ret;
}
int n = 1 << clog2(fsz + gsz - 1);
f.resize(n, mint(0));
g.resize(n, mint(0));
ntt(f);
ntt(g);
for (int i = 0; i < n; ++i) f[i] *= g[i];
intt(f);
f.resize(fsz + gsz - 1);
return f;
}
};