This documentation is automatically generated by online-judge-tools/verification-helper
#include "Graph/min_cost_flow.hpp"#pragma once
#include <vector>
#include <limits>
template <class Cap, class Cost>
struct MinCostFlow {
struct Edge {
int src, dst;
Cap cap;
Cost cost;
Edge(int src, int dst, Cap cap, Cost cost)
: src(src), dst(dst), cap(cap), cost(cost){};
};
std::vector<Edge> edges;
std::vector<std::vector<int>> graph;
std::vector<Cost> dist;
std::vector<int> rev;
const Cost INF = std::numeric_limits<Cost>::max() / 2;
explicit MinCostFlow(int n) : graph(n), dist(n), rev(n) {}
void span(int u, int v, Cap cap, Cost cost) {
graph[u].push_back(edges.size());
edges.emplace_back(u, v, cap, cost);
graph[v].push_back(edges.size());
edges.emplace_back(v, u, 0, -cost);
}
void bellman_ford(int s) {
std::fill(dist.begin(), dist.end(), INF);
dist[s] = 0;
bool update = true;
while (update) {
update = false;
for (int eidx = 0; eidx < (int)edges.size(); ++eidx) {
const auto& edge = edges[eidx];
int u = edge.src, v = edge.dst;
if (edge.cap > 0 && dist[u] < INF &&
dist[v] > dist[u] + edge.cost) {
dist[v] = dist[u] + edge.cost;
rev[v] = eidx;
update = true;
}
}
}
}
std::pair<Cap, Cost> flow(int s, int g, Cap flow_limit) {
Cap fsum = 0;
Cost csum = 0;
while (flow_limit > 0) {
bellman_ford(s);
if (dist[g] == INF) break;
Cap f = flow_limit;
int v = g;
while (v != s) {
const auto& edge = edges[rev[v]];
f = std::min(f, edge.cap);
v = edge.src;
}
flow_limit -= f;
fsum += f;
csum += f * dist[g];
v = g;
while (v != s) {
auto& edge = edges[rev[v]];
auto& redge = edges[rev[v] ^ 1];
edge.cap -= f;
redge.cap += f;
v = edge.src;
}
}
return {fsum, csum};
}
std::pair<Cap, Cost> flow(int s, int g) {
return flow(s, g, std::numeric_limits<Cap>::max());
}
};#line 2 "Graph/min_cost_flow.hpp"
#include <vector>
#include <limits>
template <class Cap, class Cost>
struct MinCostFlow {
struct Edge {
int src, dst;
Cap cap;
Cost cost;
Edge(int src, int dst, Cap cap, Cost cost)
: src(src), dst(dst), cap(cap), cost(cost){};
};
std::vector<Edge> edges;
std::vector<std::vector<int>> graph;
std::vector<Cost> dist;
std::vector<int> rev;
const Cost INF = std::numeric_limits<Cost>::max() / 2;
explicit MinCostFlow(int n) : graph(n), dist(n), rev(n) {}
void span(int u, int v, Cap cap, Cost cost) {
graph[u].push_back(edges.size());
edges.emplace_back(u, v, cap, cost);
graph[v].push_back(edges.size());
edges.emplace_back(v, u, 0, -cost);
}
void bellman_ford(int s) {
std::fill(dist.begin(), dist.end(), INF);
dist[s] = 0;
bool update = true;
while (update) {
update = false;
for (int eidx = 0; eidx < (int)edges.size(); ++eidx) {
const auto& edge = edges[eidx];
int u = edge.src, v = edge.dst;
if (edge.cap > 0 && dist[u] < INF &&
dist[v] > dist[u] + edge.cost) {
dist[v] = dist[u] + edge.cost;
rev[v] = eidx;
update = true;
}
}
}
}
std::pair<Cap, Cost> flow(int s, int g, Cap flow_limit) {
Cap fsum = 0;
Cost csum = 0;
while (flow_limit > 0) {
bellman_ford(s);
if (dist[g] == INF) break;
Cap f = flow_limit;
int v = g;
while (v != s) {
const auto& edge = edges[rev[v]];
f = std::min(f, edge.cap);
v = edge.src;
}
flow_limit -= f;
fsum += f;
csum += f * dist[g];
v = g;
while (v != s) {
auto& edge = edges[rev[v]];
auto& redge = edges[rev[v] ^ 1];
edge.cap -= f;
redge.cap += f;
v = edge.src;
}
}
return {fsum, csum};
}
std::pair<Cap, Cost> flow(int s, int g) {
return flow(s, g, std::numeric_limits<Cap>::max());
}
};