This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#include "../DataStructure/lazy_segment_tree.hpp"
#include "../Number/modint.hpp"
constexpr int MOD = 998244353;
using mint = ModInt<MOD>;
template <class T>
struct Affine {
T a, b;
Affine() = default;
Affine(T a, T b) : a(a), b(b) {}
T operator()(T x) const { return a * x + b; }
bool operator==(const Affine<T>& rhs) const {
return a == rhs.a && b == rhs.b;
}
};
using affine = Affine<mint>;
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
int n, q;
std::cin >> n >> q;
std::vector<mint> xs(n);
for (auto& x : xs) std::cin >> x;
LazySegmentTree<mint, affine>
seg(
xs, 0, affine(1, 0),
[](mint a, mint b) { return a + b; },
[](affine f, affine g) { return affine(f.a * g.a, g.a * f.b + g.b); },
[](mint a, affine f, int k) { return f.a * a + f.b * k; });
while (q--) {
int t;
std::cin >> t;
if (t == 0) {
int l, r, a, b;
std::cin >> l >> r >> a >> b;
seg.update(l, r, affine(a, b));
} else {
int l, r;
std::cin >> l >> r;
std::cout << seg.fold(l, r) << "\n";
}
}
return 0;
}#line 1 "Verify/lazy_segment_tree_affine.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"
#line 2 "DataStructure/lazy_segment_tree.hpp"
#include <vector>
#include <functional>
template <class T, class E>
struct LazySegmentTree {
using DMerger = std::function<T(T, T)>;
using OMerger = std::function<E(E, E)>;
using Applier = std::function<T(T, E, int)>;
int length;
T d_unit;
E o_unit;
std::vector<T> dat;
std::vector<E> ope;
DMerger dmerge;
OMerger omerge;
Applier app;
explicit LazySegmentTree(int n,
T d_unit, E o_unit,
DMerger dmerge,
OMerger omerge,
Applier app)
: length(1),
d_unit(d_unit),
o_unit(o_unit),
dmerge(dmerge),
omerge(omerge),
app(app) {
while (length < n) length <<= 1;
dat.assign(length * 2, d_unit);
ope.assign(length * 2, o_unit);
}
template <class Container>
explicit LazySegmentTree(const Container& elems,
T d_unit, E o_unit,
DMerger dmerge,
OMerger omerge,
Applier app)
: length(1),
d_unit(d_unit),
o_unit(o_unit),
dmerge(dmerge),
omerge(omerge),
app(app) {
int n = elems.size();
while (length < n) length <<= 1;
dat.assign(length * 2, d_unit);
ope.assign(length * 2, o_unit);
std::copy(elems.begin(), elems.end(), dat.begin() + length);
for (int nidx = length - 1; nidx >= 1; --nidx) {
T vl = dat[nidx * 2 + 0];
T vr = dat[nidx * 2 + 1];
dat[nidx] = dmerge(vl, vr);
}
}
void propagate(int nidx, int len) {
if (ope[nidx] == o_unit) return;
// propagate
if (len > 1) {
ope[nidx * 2 + 0] = omerge(ope[nidx * 2 + 0], ope[nidx]);
ope[nidx * 2 + 1] = omerge(ope[nidx * 2 + 1], ope[nidx]);
}
// update data
dat[nidx] = app(dat[nidx], ope[nidx], len);
ope[nidx] = o_unit;
}
void update(int ql, int qr, E e, int nidx, int nl, int nr) {
propagate(nidx, nr - nl);
if (nr <= ql || qr <= nl) return;
if (ql <= nl && nr <= qr) {
ope[nidx] = omerge(ope[nidx], e);
propagate(nidx, nr - nl);
return;
}
int nm = (nl + nr) / 2;
update(ql, qr, e, nidx * 2 + 0, nl, nm);
update(ql, qr, e, nidx * 2 + 1, nm, nr);
// update data
dat[nidx] = dmerge(dat[nidx * 2 + 0], dat[nidx * 2 + 1]);
}
void update(int ql, int qr, E e) { return update(ql, qr, e, 1, 0, length); }
T fold(int ql, int qr, int nidx, int nl, int nr) {
propagate(nidx, nr - nl);
if (nr <= ql || qr <= nl) return d_unit;
if (ql <= nl && nr <= qr) return dat[nidx];
int nm = (nl + nr) / 2;
T vl = fold(ql, qr, nidx * 2 + 0, nl, nm);
T vr = fold(ql, qr, nidx * 2 + 1, nm, nr);
return dmerge(vl, vr);
}
T fold(int ql, int qr) { return fold(ql, qr, 1, 0, length); }
T get(int idx) { return fold(idx, idx + 1); }
T fold_all() { return fold(0, length); }
};
#line 2 "Number/modint.hpp"
#include <iostream>
template <int MOD>
struct ModInt {
using lint = long long;
int val;
// constructor
ModInt(lint v = 0) : val(v % MOD) {
if (val < 0) val += MOD;
};
// unary operator
ModInt operator+() const { return ModInt(val); }
ModInt operator-() const { return ModInt(MOD - val); }
ModInt& operator++() { return *this += 1; }
ModInt& operator--() { return *this -= 1; }
// functions
ModInt pow(lint n) const {
auto x = ModInt(1);
auto b = *this;
while (n > 0) {
if (n & 1) x *= b;
n >>= 1;
b *= b;
}
return x;
}
ModInt inv() const {
int s = val, t = MOD,
xs = 1, xt = 0;
while (t != 0) {
auto div = s / t;
s -= t * div;
xs -= xt * div;
std::swap(s, t);
std::swap(xs, xt);
}
return xs;
}
// arithmetic
ModInt operator+(const ModInt& x) const { return ModInt(*this) += x; }
ModInt operator-(const ModInt& x) const { return ModInt(*this) -= x; }
ModInt operator*(const ModInt& x) const { return ModInt(*this) *= x; }
ModInt operator/(const ModInt& x) const { return ModInt(*this) /= x; }
ModInt& operator+=(const ModInt& x) {
if ((val += x.val) >= MOD) val -= MOD;
return *this;
}
ModInt& operator-=(const ModInt& x) {
if ((val -= x.val) < 0) val += MOD;
return *this;
}
ModInt& operator*=(const ModInt& x) {
val = lint(val) * x.val % MOD;
return *this;
}
ModInt& operator/=(const ModInt& x) { return *this *= x.inv(); }
// comparator
bool operator==(const ModInt& b) const { return val == b.val; }
bool operator!=(const ModInt& b) const { return val != b.val; }
// I/O
friend std::istream& operator>>(std::istream& is, ModInt& x) {
lint v;
is >> v;
x = v;
return is;
}
friend std::ostream& operator<<(std::ostream& os, const ModInt& x) {
return os << x.val;
}
};
using modint1000000007 = ModInt<1000000007>;
using modint998244353 = ModInt<998244353>;
#line 5 "Verify/lazy_segment_tree_affine.test.cpp"
constexpr int MOD = 998244353;
using mint = ModInt<MOD>;
template <class T>
struct Affine {
T a, b;
Affine() = default;
Affine(T a, T b) : a(a), b(b) {}
T operator()(T x) const { return a * x + b; }
bool operator==(const Affine<T>& rhs) const {
return a == rhs.a && b == rhs.b;
}
};
using affine = Affine<mint>;
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
int n, q;
std::cin >> n >> q;
std::vector<mint> xs(n);
for (auto& x : xs) std::cin >> x;
LazySegmentTree<mint, affine>
seg(
xs, 0, affine(1, 0),
[](mint a, mint b) { return a + b; },
[](affine f, affine g) { return affine(f.a * g.a, g.a * f.b + g.b); },
[](mint a, affine f, int k) { return f.a * a + f.b * k; });
while (q--) {
int t;
std::cin >> t;
if (t == 0) {
int l, r, a, b;
std::cin >> l >> r >> a >> b;
seg.update(l, r, affine(a, b));
} else {
int l, r;
std::cin >> l >> r;
std::cout << seg.fold(l, r) << "\n";
}
}
return 0;
}